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Optical processes of a single-atom model in the phonon 
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Abstract The optical processes of a single-atom model in the phonon field have been studied. 
To deal with the quanhlm electrodynamics phenomena in condensed matter miomcavities, the 
influence of elemn-phonon intendons has to be taken into account, As a clear picmre, the 
effect of the lattice's oscillation on the optical traosition in condensed m r  microcavities is 
reduced to a model of a single atom in a phonon field. We deduce thaf in the case with a phonon 
participating, the Bloch equation is still satisfied. In the process of spontaneous emission for 
an electron interacting with a phonon, we derive the Rabi oscillation for the simple mom in the 
phonon lield. 

1. htroduction 

Along with the development of optical communication and the microlaser, the atom-vacuum 
interaction in microcavities with dimensions of the order of a micron has become an 
attractive new topic called cavity quantum electrodynamics (cavity QED) [l-31. Interactions 
between atoms and the vacuum in microcavities produce many interesting phenomena; 
for example, the spontaneous emission rate of atoms can be enhanced or forbidden in 
microcavities through changes of the dimension of the cavities [4], an atom can exchange 
energy periodically with a cavity, instead of radiatively decaying to a lower energy state, 
etc [5]. Recently, developments in molecular beam epitaxy and other growth techniques 
have made it possible to tailor quantum confined structures, such as quantum wells, 
superlattices, quantum l ies ,  and quantum dots. Therefore, the microfabrication techniques 
make condensed matter microcavities, such as polymer spheres, or semiconductor Fabry- 
Perot microcavities, possible. Naturally, the investigation of the cavity QED effect in 
condensed matter microcavities is raised. When lightwaves propagate in a condensed matter 
microcavity, the electronic state of the atoms is changed, accompanied by radiation of the 
electromagnetic field which reacts back with the electron. The light and the excited electrons 
change the lattice vibrations, and the changed periodic potential of the lattice reacts with the 
electrons; in general, the interaction between the electrons and the lattice can be described 
by the interaction between the electrons and phonons. When the wavelength of the light is 
in the range of infra-red or far infra-red waves, this interaction has to be taken into account. 
If we only consider the linear interaction, there are at least three terms we have to deal with: 
the interaction between photon and electron, the interaction between electron and phonon, 
and that between photon and phonon. 

In this paper, we report a single-atom model in which the effect of the lattice oscillation 
on the atom is reduced to a phonon field. For the processes involved, interaction between 

t This work was partly supported by the Chinese National Science Foundation. 
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the radiation and condensed matter, we thus consider only a single atom located in a phonon 
field, instead of dealing with a complicated problem such as an atom in a periodic potential. 
For simplicity, this atom has only one electron and two non-degenerate energy levels; the 
electron can W s i t  between the ground state and the excited state. In section 2, we will 
give the Hamiltonian for this system. In section 3, we show that the Bloch equation is still 
satisfied for this system. In section 4, we discuss the Rabi oscillation and Rabi frequency 
for this system. 

2. The Hamiltonian of the system 

In this section we present and discuss the assumptions constituting the theoretical model. 
The total Hamiltonian of the system for an atom in a light field and a phonon field is 

(1) 
where He is the electronic Hamiltonian, HphQto0 is the photon Hamiltonian, and Hphonon 
is the phonon Hamiltonian. HI,,  Hrz, and Hr3 are the Hamiltonians for the interactions 
between electron and photon, electron and phonon, and photon and phonon, respectively. 
The Hamiltonian for this system, as written above, is based on the adiabatic approximation 
(Bom-Oppenheimer method). Because electrons and ions have very different masses, the 
ions can only respond slowly to a change in the electron configuration, while the electrons 
respond adiabatically to a change in the position of the ions. Then we can divide the 
total Hamiltonian into those for the movement of the electrons within a stationary lattice 
and those for the movement of the ions in a uniform space containing electrons, i.e. the 
term for the phonons. Next we will deduce their expressions in the representation of the 
interaction. 

H = He + Hphomn + Hphonon + Hi1 + Hi2 + 4 3  

(i) The electron Hamiltonian, 

The energy of the excited state t i) is indicated by E; (i  = 1,2 for our mode, i.e. the ground 
state and the excited state). It is convenient to work with the Hamiltonian expressed in the 
representation of second quantization. Let &(r) be the Schrodinger eigenfunction for the 
electrons, then any wavefunctions can be expressed using this set of basic functions 

1 j 

Thus the creation and annihilation operators of electrons in the states l j )  are denoted by b; 
and bj, respectively. The Hamiltonian of the electrons is then 

(2) 

The creation and annihilation operators for electrons are Fermi operators and they have the 
following properties: 

He = x f i o i ( b l b j  + 4). 
j 

bjl0) = O  (3) 
where 10) is the vacuum state. The electron in thejth state is denoted by 

bjl0). (4) 

bjbjI@) t i  = 0. 
By the Pauli exclusion principle, there are no two electrons in one state, therefore 

(5) 
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The commutation relations of the Fermi operators are 

[bi, bLl+ = 0 [bj, bd+ = 0 (6) t [bj. bd+ = 6 j k  

where [a, b]+ =ab + ba. 

(ii) The phonon Hamiltonian. 

Assuming that the crystal is non-conducting and the lattice dynamics are harmonic, the 
lattice thermal oscillations can be considered as a summation of a set of normal modes, the 
creation and annihilation operators of phonons are denoted by ci(q)  and C A ( ~ ) ,  where A 
is the index of the mode, whose frequency is OA, and q is the wavevector of phonon in 
reciprocal space. These operators lead to a phonon Hamiltonian 

(7) 

The phonon field described by (7), which is a collective excitation, consists of non- 
interacting phonons. Each state in the lattice vibration spectrum can be occupied by any 
number of phonons, since phonons are bosons. 

(iii) The photon Hamiltonian. 

The quantization of the electromagnetic field leads to the introduction of photons. We 
denote the creation and annihilation operators for the photons by a1 and ah,  where h is the 
index of the field mode. The Hamiltonian for the photons is 

Hphooon = x f i m ~ ( c ~ c ~  t f $1. 
A 

Both photon and phonon follow Bose statistics. The creation and annihilation operators for 
Bosons have the following properties: 

aln) = o aln) = &In - 1) at],) = & T l n  + 1) ataln) = nln) (9) 

where a: and ah fulfill the commutation relation 

(10) [aA, a:,] = 6,,, [ai, ah] = [a:, a11 = 0. 

(iv) The photon-electron interaction. 

Using the electric dipole momentum approximation, and neglecting the higher terms, we 
have the Hamiltonian of the interaction between electron and electromagnetic field [6]: 

Hi1 = fi bjbkgi, jkCa1+ a 3  (11) 
jkh  

where gl, j x ,  the coupling coefficient, is given, apart from unimportant factors, by 

gh,jk = @~(r)luipl@&)dr (12) s 
wherep is the momentum and U is the normil coordinate of the system, and @j(r), &(r) are 
the eigenfuctions of the Schrodinger equation for electrons in the states j and k, respectively. 
Here we assume the electron field and the electromagnetic field are independent of each 
other; their operators, therefore, commute with each other, and we have 

[a:, b!] = 0 [ah, bj] = 0 [ai ,  bj] = 0 ~ [aA, bjl = 0 .  (13) 
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(v) The electron-phonon interaction. 

Electrons within a crystal give rise to a certain charge distribution which produces an electric 
field that influences the lattice vibrations. Since the field of the electron is a static field, 
it only interacts with the longitudinal acoustic phonons [7]. The basic electron-phonon 
interaction process is absorption or emission of a phonon with a simultaneous change of 
the electron state. The interaction Hamiltonian is [7] 

and YA, given by Hlz = -CA yA(r)(cA f cl), is the Taylor expantion coefficient of Hlz 
related to the electron, and +A(r) is the eigenhction for the electron. 

(vi) The photon-phonon interaction 

Since the polarized field of a transverse optical phonon is a curled field, an electromagnetic 
field is accompanied by a transverse optical phonon. Thus the photon will interact with 
the transverse optical phonon. There are many different processes; for instance, first-order 
processes involve absorption of only one photon and one phonon of identical energy and 
wavevector generation. In a secondary process a photon decays into two or more phonons. 
In the process of light scattering, a photon transforms another photon of different energy 
with absorption or emission of one or more phonons. If the phonon involved in such 
processes belongs to the optical branch then we have Raman scattering, if they belong to 
the acoustic branch we have Brilliouin scattering. In our simple model, we only consider 
the 6rst-order process. Classically, the interaction energy is due to a polarization vibrator 
in the electric field, therefore the interaction energy is the negative of the product of the 
polarization vector and the electric field. Then the Hamiltonian of this interaction is [SI 

(16) 

Here we assume that the interaction between photon and phonon is much smaller than that 
between electron and phonons, therefore we neglect the term expressed in (16) when we go 
further. 

H~~ = -PE - C(cf + cq) exp[iq.& + IC-T-)]. 
qn 

3. Quantum Bloch equation 

The atom in which the elect" are in different electronic states can be regarded as if the 
atom is in different atomic states. For convenience, we introduce the atomic operators to 
indicate the change of atomic states. Respectively, we use the upper and lower operators 
S(+) and S(-), which denote the transition of the electron excited from the ground state to 
the excited state and from the excited state to the ground state: 

s(+) = 12)(11 s(-) = 11)(21 (17) 
where 11) and 12) show the ground state and excited state, respectively. For convenience, we 
take the zero point of energy as the mid-point between two levels, i.e. Ez = -El = 
The operator S, can be used to describe the Hamiltonian of the two-level free atomic state, 

(18) 

1 

Hamm = hoo(bib) = hmoSz 
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where q, is given by ?io, = E2 - E l ,  S, = tuz and uz is the Pauli operanor. The atomic 
operators fulfill the commutation relations 

[S(+), s(-)1 = 2sz [S(", S,] = TS(*). (19) 

Using the atomic operators, we can rewrite the Hamiltonian of a two-level atom and multi- 
mode photon and phonon field system as 

where A = C,(al +a,), C = CA(cl + C A ) ,  and YA is a coefficient. In the Heisenberg 
representation, the equation of motion for an operator 0 is 

dO 
8- = [O. H I .  

dt 
Then we can induce the following equations with the commutation relation of (18): 

We introduce the following variables: 

RI = - (g  * S (+) + gs(-)) 
R* = ik*s(+) -&-)I 

R3 = 21glsz. 

From (22), we can get 

RI = -i(oo + C)R2 

dz = -(WO + C ) R I  + KAR3 
R3 = -KARz 

where K = 21gl. We next define the nutation vector, R, and rotation momentum vector, 
Q, 

(W 
(26) 

R = R i f  + R z j  + R30 

Q = -KA(t )P  + (00 + C)?. 
Thus equation (24) can be written as the Blcch equation: 

-- d R ( t )  - Q ( t )  x R(t) .  
dt 

The vector R describes the atomic states, which rotate around the vector S2, which depends 
on the photon and phonon field. Thus, considering the electron-phonon interaction, the 
Bloch equation is still satisfied, except the components of R and Q are changed. 
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4. Spontanous emission 

Now we consider the system of a two-level atom in the single-mode photon field and the 
single-mode phonon field. By the rotation-wave approximation, the system Hamiltonian 
can be written as 

H =AW,S, + ~ o l a + a + ~ o z c t c + ~ ( g a t ~ ( - ~ + g * ~ ( ~ ~ a ) + f i y ~ , ( c t + c )  (28) 

where 00 ,01 ,  and 02 are the frequencies of the elecaon, photon and phonon, respectively. 
As mentioned before, electrons only couple with the longitudinal acoustic (LA) phonons, 
which are elastic waves in the crystal. The energy of the LA phonons is much less than 
the excitation energy of the electrons, therefore they have no contribution to the electronic 
excitation. Hence, in this system, the excitation number operators NI = S, +uta + ctc, as 
well as NZ = S, +uta - ctc, are conserved and they commute with the system Hamiltonian, 
which can be rewritten as 

z c  +c) H = gRwlN1+ 1 -  $RZ2Nz + ffi&N, + 4RZ4N4 +R(gatS(-) + g'S(+)a) +RyS ( t 
(29) 

where 

NI =(S,+a*a+ctc) Nz=(S,+ata-ctc) (30) 
N3 = (S, -uta + ctc) N4 = (S, -uta - ctc) 

and 

In the Heisenbeger representation, the equation of motion of the atomic operator is 

S,= --[S,, HI = i(gatd-1 - g  S (32) * (+) ) i 
R 

i .  1 1 
fi fi h 

a 

S,= --[S,, HI = -g[atS(-), HI - -g*[S(+)a, U] 

= ~[33+Z4+2y(ct+c)](gatS(-)+g*S(+)a) -4lgl2(~+ata'+S,)S,. 

(33) 

= i. and the To evaluate these formule, we used the relations, S(+)S(-) = S, + 4 and 
commutation relations in (19). Letting coR = H / f i ,  we can simplify equation (33) to 

where the quantity X is given by 

x = fh +?%+2y(Ct + C ) l  

and the operator Q is given by 

= X' +41g['(f +uta + s,) . 
It is clear that Q is  the Rabi frequency, at which the atom reverses between the ground state 
and the excitation state. 
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Since the right-hand side of (34) is the conserved quantity, it can he solved. Let 

(37) 

In, m, I )  = In)lm)lZ) be the eigenstate of a b ,  S, and ctc, i.e. 

at(O)a(O)In, m, 1 )  = nln, m, 1)  
s,(O)[n, m, 1)  = mln, m, 1)  m = or - ?. 2 

ctcln, m, 1) =!In, m, 1 )  

n = 0, I,  .. . 
I 

I = 0.1,. . . . 
It is easy to obtain (oR) = mwo + no1 + loz and (NI) = n + m + I ;  the solution of (34) is 
then 

For the spontanous emission in the vaccm electromagnetic field, n = 0, m = i and we 
have 

where q = 4[gI2. 
From equations (38) and (39). we can draw the following important conclusions. 

(i) The Bloch equation is satisfied even in the caSe of the phonon participating, but, due 
to the electron-phonon interaction, there is an extra term in the parameter of the Bloch 
equation. 

(ii) When the atom interacts with the photon and phonon fields, it will be excited from the 
ground state to the state which is the superposition of the ground state and excited state, 
and then it returns to the ground state. 

(iii) From equation (33, the contribution of phonons to the excitation of the electrons is an 
addition to the Rabi resonance frequency. 

(iv) From (14) and (15), the coupling coefficients g and y are related to +, the position of 
the electrons; therefore, the Rabi oscillation frequency depends on the position vector 
of the electrons. 
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